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I. MOTIVATION

Traditional chess engines face a compelling dual challenge
that significantly limits their practical utility for human
chess education and training. First, engines like Stockfish,
AlphaZero, and LeelaChess require computationally inten-
sive tree-search algorithms, evaluating millions of positions
per second to determine optimal moves. Second, and more
critically, these systems fail to provide realistic opponents
for human players across different skill levels. Current ap-
proaches create weaker opponents by simply limiting search
depth, resulting in highly inconsistent play patterns that
alternate unpredictably between brilliant strategic moves and
inexplicable blunders—fundamentally unlike the systematic,
consistent errors characteristic of human players at specific
ELO ratings. This creates an unrealistic training environment
where players practice against opponents that exhibit super-
human tactical vision followed by irrational mistakes, poorly
preparing them for actual human competition.

II. METHOD

HumanChess introduces a novel searchless architecture
that fundamentally reimagines chess Al through three core
innovations. First, the base model employs a spatially-aware
transformer with RelativeMultiHeadAttention and 2D co-
ordinate embeddings that explicitly model the 8x8 chess
board geometry, enabling natural understanding of chess-
specific spatial relationships without explicit rule program-
ming. Second, the system implements two innovative fine-
tuning approaches: (a) Low-Rank Adaptation (LoRA) with
soft-label supervision that assigns probability mass to multi-
ple viable moves based on win percentage similarity, avoid-
ing erratic training from one-hot encoded ground truths, and
(b) a discrete diffusion framework with ELO-conditioned
move generation that models uncertainty in human decision-
making through bounded self-play reinforcement learning
with multi-temporal rewards spanning immediate tactical
feedback and 4-move strategic lookahead. Third, the ap-
proach incorporates entropy-conditioned denoising during
inference, progressively refining predictions by updating only
the least confident tokens at each timestep while preserving
high-confidence decisions.

ITII. IMPLEMENTATION AND RESULTS
The system was implemented using a 6.89 million pa-

rameter decoder-only transformer trained on the ChessBench
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dataset containing 15 billion Stockfish-annotated data points.
Key engineering achievements include the development of
Algorithm 1 for generating soft-encoded vectors that identify
the 6 closest win percentage moves to enable robust training
signals. Quantitative results demonstrate significant progress:
the base model achieved 1.2721 loss corresponding to win
percentage estimation within 2.3% accuracy without tree
search. The diffusion model showed stable convergence with
final training loss of 1.271, improving from initial per-
token loss of 0.42 to 0.004. Most importantly, self-play
evaluation against the Maia-1100 engine revealed consistent
improvement in decision-making quality, with mean average
move reward improving from -0.3286 to -0.0645 over 7000
episodes—a 400% reduction in material losses. Attention
visualization revealed hierarchical development of chess
understanding, with early layers capturing cross-positional
relationships and deeper layers exhibiting file and rank-based
movement patterns characteristic of sliding pieces.

IV. DISCUSSION AND CONCLUSION

These results matter because they demonstrate the first
successful searchless chess engine capable of human-like
play across multiple skill levels while requiring orders of
magnitude less computation than traditional approaches. The
system provides realistic training opponents that make con-
sistent, skill-appropriate errors rather than erratic blunders,
better preparing players for human competition. Limitations
include performance degradation in endgame scenarios due
to exponentially larger state spaces, with entropy analysis
showing the model approaches near-randomness in late-game
positions (entropy of 6.166 vs. 2.17 in early game). The
LoRA approach revealed capacity limitations in smaller mod-
els, suggesting larger architectures are necessary for main-
taining chess competency during human-style fine-tuning.
Future work should prioritize expanding model size for
deeper strategic understanding and exploring domain trans-
fer to other strategic games. The outcome-focused impact
extends beyond chess: this searchless, human-skill modeling
framework establishes a foundation for creating more real-
istic Al training partners across various strategic domains
while maintaining computational efficiency.
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Abstract— Traditional chess engines like Stockfish and Al-
phaZero achieve superhuman performance through computa-
tionally intensive tree-search algorithms, but struggle to provide
realistic opponents for human players at lower skill levels.
These systems typically create weaker opponents by limiting
search depth, resulting in erratic play patterns that alternate
between strong moves and irrational blunders—unlike the
consistent, systematic errors characteristic of human players.
HumanChess, presented here, is a novel searchless chess engine
that addresses both computational efficiency and human-like
play across multiple skill levels. Our approach combines a
spatially-aware transformer architecture with innovative fine-
tuning methodologies to create agents that play realistically at
different ELO ratings (1200-1800). The base model incorporates
2D coordinate embeddings and RelativeMultiHeadA ttention to
naturally understand chess board geometry, achieving competi-
tive performance with only two forward passes at runtime. The
base model essentially serves as a maximal knowledge base for
the fine-tuned ELO conditioned models to build off of. We
explore two fine-tuning approaches: (1) Low-Rank Adaptation
(LoRA) with soft-label supervision that assigns probability mass
to multiple viable moves based on win percentage similarity,
and (2) a discrete diffusion framework with ELO-conditioned
move generation that models the uncertainty in human decision-
making. The first approach aims to leverage our base model as
a bootstrap oracle in order to avoid erratic training arising
from training on one hot encoded moves as ground truths
from human data. By identifying moves that are within a
similar win percentage of the human move, we allow the truth
label to enforce the model’s current chess understanding in
addition to the human rather than take large steps towards
single human actions. The diffusion approach employs bounded
self-play reinforcement learning with multi-temporal rewards
spanning immediate tactical feedback and 4-move strategic
lookahead. Our system demonstrates the ability to generate
human-like chess play without tree search, requiring orders
of magnitude less computation than traditional engines while
providing more realistic training opponents across skill levels.
Experimental results show stable convergence during training
with the model achieving strong performance in early game
positions, though challenges remain in endgame scenarios due
to the exponentially larger state space.

I. INTRODUCTION

Current chess engines suffer from two primary challenges.
First, traditional chess engines, such as Stockfish, AlphaZero,
and LeelaChess, primarily rely on tree-based search algo-
rithms, meaning that they require large computations to eval-
uate positions and determine optimal moves [1]. In addition,
while these engines are able to accomplish a very high,
super-human level of play, existing techniques for creating
a lower-rated opponents (that are useful for a chess player
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c) Middle Game

d) End Game

Fig. 1: HumanChess Sytem Overview HumanChess uses
Diffusion to consider many possible trajectories for a given
player skill level. (a) Decides between playing a Queen’s
Pawn and King’s Pawn Opening, (b) Considers three varia-
tions after Black responds with the French Defense (c) After
a blunder by Black, the model only considers one option
since it has superior win percentage (Nc6 still leads to Black
losing a Queen), (d) Many moves in the end game attain a
similar game result.

who is learning) depend on adjusting the depth parameters
of these powerful chess engines, resulting in opponents that
have highly inconsistent play patterns [2]. For instance, such
systems often play well up to a certain point, then make
an irrational, erratic decision, like sacrificing a queen, to
offset the previous good moves. Hence, these systems fail
to capture the systematic and largely consistent nature of
human errors when playing chess, where these agents play
in an often unrealistic manner. Moreover, Stockfish and other
chess policy approximation techniques like LeelaChess and
AlphaZero still rely on tree-based search techniques, which
result in intensive computation.

In this paper, we present the development of HumanChess,
a searchless chess engine that 1) plays in a humanistic
manner and can be used across all skill levels to better



practice and improve a player’s chess abilities, as it would
be more reflective of practice against humans compared to
practice against the computer, and 2), is substantially more
efficient by requiring only the state to compute the next
action based on just two forward passes through the network
at runtime.

II. RELATED WORKS
A. Dataset and Pretrained Model

Ruoss et al. (2022) introduces ChessBench, a dataset of 10
million online games annotated by the chess engine Stock-
fish, resulting in 15 billion data points) [3]. It is worth noting
that the creation of this dataset itself is quite a substantial
task, as it represents over 8800 days of unparalleled Stockfish
evaluation time on one TPUVS.

The authors train a series of transformer models up to
270 M parameters in size, each on one of three different su-
pervised objectives: action-value prediction, state-value, and
behavioral cloning. The best result is seen from the action-
value model, which takes a board state plus a candidate move
as input and predicts the Stockfish evaluation, ultimately
selecting the move with the highest estimated evaluation.
The model performs at a 2895 Lichess rating, which shows
great generalization, as the large state space of chess makes
memorization futile. Despite this achievement, the paper fails
to address an important need—the ability to get chess engines
to play in the style of humans, especially at lower ratings.

While our ultimate goal is to model human-like behav-
ior, we begin by pretraining on Stockfish-annotated data
to provide the model with strong foundational knowledge
of chess tactics and strategy. Relying solely on human
games—mparticularly at lower ELOs—can introduce incon-
sistent or noisy decision patterns that make it difficult for
the model to learn effective representations from scratch.
Pretraining on expert-level evaluations helps the model in-
ternalize high-quality positional understanding and tactical
motifs. We then fine-tune on real human games to specialize
this prior toward realistic, rating-specific play. This two-stage
training process is essential for producing agents that not
only play well but also make consistent, human-like mistakes
appropriate for their target skill level.
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Fig. 2: Training Loss Plot for Baseline Transformer
Model: Training loss shows convergence after 8 epochs.

B. Fine-Tuning

In the human skill level fine-tuning, we explore two
different potential approaches.

We first explore Low-Rank Adaptation (LoRA). LoRA
is a parameter-efficient method that inserts small trainable
matrices into the attention projections of the model while
keeping the majority of the pretrained weights frozen [4].
Training LoRA on top of the base model with real human-
played games will create a humanistic chess agent that can
play at multiple ELO ratings. Add more here probably

We also explore diffusion models for instilling implicit
search capabilities in the model by modeling future world
states. In [5], the authors highlight the usefulness of diffusion
models for instilling search-like abilities within models to
enhance their planning abilities without relying on explicit
search. The diffusion process inherently models the uncer-
tainty and variation in human decision-making, generating
distributions over moves that reflect how humans consider
multiple candidate moves before settling on one. The dif-
fusion model enables learning different trajectory vector
spaces for specific ELO embeddings, allowing the system to
model various human skill levels with targeted rating-specific
parameters. Extending this method to chess will create agents
that balance strategic planning with human-like play patterns
when fine-tuned on real human-played games.

C. RL Based Optimization

Silver et al. introduced AlphaZero [6], a breakthrough
general reinforcement learning algorithm that achieved su-
perhuman performance across chess, shogi, and Go through
pure self-play learning. Starting from random play with no
domain knowledge beyond game rules, AlphaZero combines
deep neural networks with Monte Carlo Tree Search (MCTS)
and learns entirely through self-play reinforcement learning.
Despite evaluating significantly fewer positions per second
than traditional engines (80k vs. 70M for Stockfish), Alp-
haZero’s neural network enables more selective search and
achieved superhuman chess performance within 4 hours of
training. However, AlphaZero still relies on computationally
intensive tree search methods and focuses exclusively on op-
timal play rather than modeling human-like behavior across
different skill levels but their self-play RL based approach
could be useful for our task.

III. METHODOLOGY
A. Base Architecture

The foundation of the HumanChess system is a decoder-
only transformer that is trained on the ChessBench state-
value dataset, containing state — win percentage pairs an-
notated by StockFish rollouts. A key innovation is that this
transformer contains a spatial-aware architecture. The model
incorporates a RelativeMultiHeadAttention mechanism with
2D coordinate embeddings - in addition to standard posi-
tional encodings, we also explicitly model the 8x8 chess
board structure by adding a relative bias for each square’s co-
ordinates and propagating the combined positional encoding
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Fig. 3: Methodology: The pipeline for this project follows a two stage training process, as explained above, and then further

optimized, as explained below.

through our attention calculation. This spatial-aware architec-
ture allows the model to naturally understand chess-specific
geometric patterns like diagonals, knight moves, and piece
relationships, resulting in a more humanistic understanding
of chess through 2D grid structure representation.

Using Q-learning, the pretrained model achieves a max-
imally performing policy within the transformer param-
eters. The pretrained model leverages the annotated win
percentages for the state-value pairs to learn high-level chess
strategies without explicit search. It should be noted that
this approach may not necessarily produce human-style play,
as the training data consists of Stockfish games rather than
actual GM or IM games.

B. Human-Style Fine-tuning

To have the model play at specific rating levels, we fine-
tune the pretrained model on rating-specific human datasets
using soft-label supervision derived from real game data.
To this end, we process a dataset of positions (as FEN
strings) and corresponding moves from a database of Lichess
games, filtered by player ELO [?]. For this step, we explore
two methods: a LoRA based action model and a discrete
diffusion-based action model, which are described in detail
in the following sections.

1) LoRA Action Model: Rather than treating each move as
the sole correct action, we constructed soft label vectors that
assign partial probability mass to alternative legal moves with
similar predicted win probabilities. This approach recognizes
that strong players often face multiple viable options in
a given position, and creates richer, more human-aligned

training signals. These relabeled actions are then used to fine-
tune the base model using Low-Rank Adaptation (LoRA).
This approach allows for adapting the model to different
player skill levels and move preferences without the full cost
of full fine-tuning as gradients will not be backpropagated
through the full transformer. Using the soft label distributions
and KL divergence loss, we optimize the LoRA parameters
and a newly initialized output layer, enabling efficient spe-
cialization of the model to human-like play that captures
high-quality moves and stylistic and strategic diversity across
skill levels.

2) Discrete Diffusion for ELO-Conditioned Move Gener-
ation: In this approach, we introduce a novel framework
for learning human-like chess policies through diffusion
models enhanced with bounded self-play, based on the DIF-
FUSEARCH work. We implement a discrete diffusion model
that learns skill-specific move distributions from human
gameplay data, enabling our end-to-end system to generate
move recommendations that authentically reflect how players
at different ELO ratings approach a given chess position.
Modeling this as a discrete diffusion problem allows us to
directly model the categorical distribution over the chess
move vocabulary.

Our diffusion model leverages an 8 layer pretrained de-
coder only transformer architecture trained on the Chess-
Bench dataset described previously. The model consists of 8
transformer layers with 256-dimensional embeddings, 8 at-
tention heads, and 1024-dimensional feed-forward networks.
The pre-trained model provides crucial chess domain knowl-
edge, including piece interaction patterns, tactical motifs, and



Algorithm 1 Generating Soft Encoded Vectors

Require: s: current state of the board (FEN String)
Require: a,e: true action ID taken by the player (1-1968)
Require: w: win percentage associated with the action taken
by the player
Require: scale: float hyperparameter corresponding to prob-
ability mass associated with true taken action
Ensure: ag,: soft encoded vector of length 1968 with asso-
ciated probability masses
Initialize agy < 01968
% < legal moves in state s
for each move in .Z do
Find next 6 closest win percentage moves to w
b < next 6 closest win percentage move IDs
end for
Create weighted probability mass for IDs in b according
to their similarity in win percentage to w, scaled to (1 —
scale)
8: dout|arue] — scale
9: for i=1to |b| do
10:  aou[D[i]] + corresponding probability mass from
weighted distribution
11: end for
12: for all remaining entries in aqy do
13:  aoulj] < € for entries not assigned above
14: end for
15: Normalize agy such that ):}2?8 aont[i] = 1

A O i

17: return agy

positional evaluation heuristics. Rather than training from
scratch, we initialize our diffusion model with these learned
representations and adapt them through our novel ELO-
conditioning framework.

We employ Low-Rank Adaptation (LoRA) to efficiently
adapt the pre-trained architecture for our diffusion task.
LoRA decomposes weight updates into low-rank matrices,
dramatically reducing the number of trainable parameters
while preserving model expressiveness through the expres-
sion h = Wyx + AWx = Wyx + BAx where B € R?*" and
A € R™* and rank(r) << min(d,k). We apply LoRA with
rank r=128 and scaling factor alpha=256 to the query, key,
value, and output projection matrices within each attention
head. This configuration reduces trainable parameters by
approximately 90% while maintaining the model’s capacity
to learn complex skill-dependent pattern, targeting the atten-
tion mechanism where we hypothesize skill-level differences
primarily manifest.

Player skill conditioning represents a core innovation in
our approach. We model ELO ratings through learnable
bucket embeddings that span our target range of 1200-1800
with 100-point granularity, resulting in 7 discrete buckets.
To enable smooth skill interpolation rather than discrete
jumps, we implement continuous ELO conditioning through
linear interpolation between adjacent bucket embeddings.

This process is explained further in 7.1. The continuous

ELO embedding is broadcast across all sequence positions

and added to the position embeddings, ensuring that skill-

level information influences every aspect of the model’s

reasoning process. We break up this model into a few

different components:

a. Discrete Diffusion Process

Our diffusion formulation operates directly on the dis-
crete move vocabulary. The forward diffusion process
gradually corrupts clean move sequences by mixing
them with uniform noise according to a predefined
schedule. For a clean move sequence x(y and a timestep
t, the forward process samples from:

1

—0y)- ml\v\
where o, represents the noise schedule, OneHot(x)
is the one-hot encoding of the true move token, and
[V| = 2000 is our move vocabulary size. The term
“17|1|v\ represents a uniform distribution over all pos-
sible moves, where each move has probability ﬁ
We create a categorical mixture distribution that inter-
polates between the true move (represented as a one-hot
vector) and uniform noise over the vocabulary. Att =0,
we have o = 1, recovering the clean data distribution.
As t increases, o, decreases, gradually shifting prob-
ability mass from the true move to uniformly random
moves in the vocabulary. The noise schedule follows
o, = [T'_,(1 — B;) with linearly increasing B; values
from 0.025 to 0.1 over T = 40 diffusion steps. During
training, we randomly sample timesteps t Uniform(0,
T-1) and apply the corresponding noise level to ground
truth move sequences. The model learns to predict
the original clean moves given the noisy observations,
position context, and target ELO rating.

b. Model Architecture
The input to the model is represented as follows:

q(x¢|x0) = 04 - OneHot(xo) + (1

x = [CLS]||state_tokens| |future_tokens

where state_tokens represent the current chess position
encoded as piece-square tokens, and future_tokens rep-
resent the (potentially noised) move sequence to be
denoised. The exact representations of these tokens is
explained in Section ??) .

Position embeddings are applied through the inherited
positional encoding from the base model, while ELO
embeddings are broadcast and added across all posi-
tions. Temporal embeddings for the diffusion timestep
t are learned through a separate embedding layer ini-
tialized to zero, allowing the model to gradually learn
timestep-specific behaviors during training. The tempo-
ral embedding is critical for the denoising process, as it
allows the model to adapt its predictions based on the
current noise level. At early timesteps (high noise), the
model should focus on broad strategic patterns, while at
later timesteps (low noise), it should attend to precise
tactical considerations.



c. Training And Loss
Our training objective focuses specifically on positions
where noise was applied, reflecting the insight that the
model should learn to correct corrupted tokens rather
than simply copying already-clean inputs. The loss
function incorporates several masking strategies:

1
L= 5 LAY [CEale” o, elo). f)
b=1 =1
x mask_changed bt X mask,Validbyl]
)Lr .Bt

B
In this formulation, A, is given by B;/(1 — &), which
provides timestep-dependent weighting to emphasize
harder denoising steps. The term mask_changed,; is
an indicator that equals 1 if token / in example b
was corrupted by the forward noising process (and 0
otherwise), ensuring we only compute loss on positions
that were actually altered. The term mask_valid,, ; equals
1 if token / in example b is not a padding token
(and O if it is), which excludes padding from the loss.
Finally, CE(-,-) denotes the cross-entropy loss over the
move vocabulary. Weighting by the timestep is a crucial
stability component to prevent the model from being
dominated by easy denoising tasks and ensures that the
model still learns from high-noise scenarios.
d. Diffusion Inference

During inference, we employ a reverse diffusion pro-
cess, which we call entropy conditioned denoising,
that iteratively denoises a randomly initialized move
sequence over T = 40 timesteps. Starting from uni-
form random tokens, the model progressively refines
predictions by selecting the highest-confidence tokens
(the one’s with minimal logit entropy) at each step.
We implement an adaptive masking strategy where
only the least confident tokens (determined by log-
probability percentiles) are updated at each timestep,
allowing high-confidence predictions to remain stable.
This selective updating mechanism prevents the model
from unnecessarily revising correct predictions while
focusing computational effort on uncertain regions of
the sequence. Additionally, the frozen tokens add to
the inherent conditional information the model can use
as other tokens that are still to be predicted are now
conditioned on the frozen tokens. One key design choice
is that we allow tokens to be “unfrozen” so that highly
confident incorrect predictions do not derail the entire
diffusion process. The process terminates early if no
tokens require updating, typically converging within 10-
15 iterations for most chess positions.

C. Self-play Evaluation

Building upon AlphaZero’s self-play paradigm, we de-
velop a novel online reinforcement learning approach
adapted for our diffusion-based chess architecture. Our

system trains against two fixed opponents of varying
strength—our own pret-rained transformer model, then a
weaker system based off of the Maia Chess bot that encom-
passes 3 different ELO levels —providing stable gameplay
across skill levels while preventing overfitting to specific
playing styles. This dual-opponent training ensures con-
sistent learning across different strategic contexts without
the instability issues common in pure self-play scenarios.
To evaluate performance and maintain realistic boundaries,
we implement policy gradient-based self-play constrained
by boundary embeddings that encode rating-specific move
patterns. Agents of multiple ELO ratings play against each
other, with results used to determine if each agent plays
at its intended skill level while preventing model drift into
superhuman play.

Our approach introduces move-by-move policy gradient
updates, contrasting with AlphaZero’s end-of-game learning
signals. We implement a hybrid reward system combining
immediate rewards (positional changes, tactical achieve-
ments), critically important delayed rewards calculated over
a 4-move lookahead window that captures positional im-
provements and strategic planning, and terminal rewards
(game outcomes). This 4-move windowed evaluation enables
the model to learn medium-term strategic concepts beyond
immediate tactical gains, bridging the gap between short-
term tactics and long-term strategy. The boundary embed-
dings ensure agents improve within realistic decision-making
boundaries—for instance, if a 1200-level agent defeats a
1400-level agent, policy gradients adjust model weights to
maintain skill-level consistency. After each move, parameters
are updated using policy gradients where the log probability
of the selected move is weighted by these multi-temporal
rewards and backpropagated, enabling rapid adaptation while
preserving human-like characteristics across ELO levels.

1V. EXPERIMENTAL RESULTS
A. Base Model Performance

After training the base model on an Nvidia 4090 GPU
(approximately 10 days of training, the model achieves a
loss of 1.2721, corresponding to a correct win percentage
categorization of within 2.3% when rescaled. This signifies
that the model demonstrates the ability to implicitly estimate
win percentages with great accuracy without performing any
depth-based tree search.

The below figure visualizes the 2D spatial attention pat-
terns across our transformer’s eight layers, revealing hier-
archical development of chess-specific spatial understand-
ing. Early layers (0-1) show off-diagonal intensity patterns
indicating cross-positional relationships between pieces on
different squares. Deeper layers (6-7) exhibit pronounced
vertical and horizontal bands, demonstrating learned file and
rank-based movement patterns characteristic of sliding pieces
like rooks and queens. The emergence of spatial blocks
throughout the layers indicates the model processes coherent
local neighborhoods, learning positional concepts such as
pawn formations and king safety zones. This hierarchical
attention development validates that our 2D spatial bias



mechanism enables the transformer to automatically discover
chess-specific spatial relationships without explicit rule pro-
gramming.

B. LoRA Model Performance

The first method for mid-level humanistic play investi-
gated was fine-tuning the baseline transformer using LoRA
adaptation. The LoRA adapters were trained on the baseline
transformer for 5 million samples extracted from the Lichess
April 2025 dataset of ELO-action annotated games.

This method, while computationally efficient, revealed
significant challenges when applied to our relatively small
6.89 million parameter base trasnformer. Our experiments
demonstrated a critical limitation: the model experience sub-
stantial capability degradation during the human-style fine-
tuning process, essentially “forgetting” how to play high-
level chess in the deeper stages of the game as it adapted to
human gameplay patterns.

With a larger model, LoRA typically preserves pre-trained
capabilities while adding new skills [7], but in this smaller
architecture limited by computation access, the model was
unable to maintain the delicate balance between chess com-
petancy and human-like play patterns. For example, the
model would initially play a reasonable move to begin the
game, such as e2e4 as White or d7d5 as Black, but then
soon after play less reasonable moves in the early game such
as h2h3, since it did not have a positional understanding
with the few LoRA parameters.

1) Soft-Label Learning Limitations: Our soft-label super-
vision approach, which assigned probability mass to multiple
viable moves based on win percentage similarity (Algo-
rithm 1), aimed to capture the natural uncertainty in hu-
man decision-making. However, the interaction between this
probabilistic training signal and the model’s limited capacity
created unexpected complications. The model struggled to
distinguish between “multiple good moves” (which should
be preserved) and “human-like suboptimal moves” (which
should be learned), often converging to play patterns that
were neither strategically sound nor authentically human-
like. During training, the loss (KL-Divergence Loss with
Soft Labeled Vectors) begins above, and converges to 1.8,
indicated moderate to large differences. This may be at-
tributed to a lack of depth in the baseline transformer and a
lack of data when fine-tuning with LoRA. This suggests that
the model’s understanding of chess became too degraded to
make coherent human-like decisins in the large state-action
space of chess.

C. Diffusion Results

Due to substantial compute constraints, we were only
able to train LoRA adapters on the baseline transformer
for 5 million samples extracted from the Lichess dataset.
Although we plan to test the model through tournament
style self play to assess capabilities, this process could
not be completed within the constraints of the class pe-
riod. Throughout training, the model exhibited stable and
consistent convergence patterns. The weighted cross-entropy

loss incorporating our timestep-dependent weighting scheme
(A) demonstrated effective learning across all diffusion
timesteps. Unlike traditional supervised learning where loss
simply decreases monotonically, diffusion training showed
characteristic oscillations reflecting the varying difficulty of
denoising at different noise levels. We therefore evaluate
performance using logit entropy as our primary metric. En-
tropy provides insight into the model’s prediction confidence
across the 1968-token vocabulary. This metric allows us to
assess both training quality and inference prediction, as these
differ substantially in diffusion models.

Our final loss during training was 1.271, decaying expo-
nentially from a first epoch training loss of 120. Intuitively,
our loss function sums the cross entropy loss of each token
across the 312 predicted tokens. Because the vocabulary is of
size 2000 (1968 actions + 31 states + 1 noise), a fully random
prediction would result in a loss of 312 x (In(1/2000) =
7.6) = 2371.2. With this understanding, we see that after
one epoch, our model had a per token loss of 0.42, with our
final epoch per token loss at 0.004. This indicates that the
model can denoise artificially noised inputs extremely well,
given a state. Since our noising schedule that caps at 0.1,
meaning that we also need to assess the model’s ability to
denoise given a completely random sample during inference.
Here we make use of the entropy confidence values.

We observe a notable trend: the model’s average entropy
for a prediction in earlier parts of the game (ie. its confi-
dence) is substantially lower (2.17) compared to when the
model approaches the middle (4.83) and end games (6.166),
where the model struggles to play reasonable moves. We
can see that the model is slightly better than random in
the middle, but in the endgame, approaches almost complete
randomness, indicating decaying performance. We note that
this is likely due to a combination of a distribution mismatch
in training data accompanied by the exponentially larger
state space in the middle and end game compared to the
beginning. Additionally, the contrast between the extremely
low training loss and the inference results, suggest that the
model may need to have substantially more parameters to
capture deeper relationships within the middle and endgame.
Moreover, the noise schedule may need to also be refined to
enforce substantially more difficult noising tasks for model
training. Due to time constraints and the lack of general
efficiency, we have still yet to test the capability of the ELO
conditional embeddings to alter chess understanding with
diffusion, but we plan to test this with simulations against
online bots once we have drastically augmented the diffusion
model’s parameter schema and training time.

D. Self Play RL Optimization Results

We tracked several key performance metrics during our
self-play training to monitor model improvement and sta-
bility. Update steps measured the frequency of parameter
updates, incrementing each time the model received a re-
ward signal above a threshold (|reward| > 0.001) for both
immediate tactical feedback and terminal game outcomes.
In addition, we recorded game length—the total number of
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moves per game across both players—to track the evolving
complexity and duration of matches over training. We also
tracked average move reward, defined as the mean pawn-
equivalent gain per action, incorporating material, positional,
and tactical bonuses. These metrics were automatically
logged and reset every 500 episodes to provide rolling
performance assessments throughout the training process.

Training against the baseline transformer unfortunately did
not yield strong performance improvements for our diffusion
model. Against a much stronger opponent, total game length
between players is a useful proxy for strategic competence —
longer matches often reflect an ability to avoid critical errors
and maintain positional resilience. Over 25,000 episodes,
the average self-play game length hovered between 35 and
55 moves with no clear upward trend, showing that the
agent never learned to outlast its far stronger opponent.
This outcome is expected, given that the pretrained baseline
bot is significantly stronger and already plays at a much
higher level. Still, this is a disappointing result, as we
hoped the diffusion model would at least be able to extend
games slightly, an indication that it is becoming more of a
competent player through our self-play approach. The lack
of clear progress may stem from sparse terminal rewards,
compounding errors in long-term planning, or insufficient
credit assignment during online updates.

By contrast, when training our diffusion model online
against the Maia engine (1100 ELO), we observed clear, if
modest, improvements in per-move quality. As summarized
in the below table, mean average move reward improved
steadily over successive 500-episode windows, confirming
that the model learned to make progressively stronger moves
against a mid-level opponent. A minor regression in episodes

5001-5500 (-0.1450) suggests occasional instability, but the
overall upward trajectory confirms that the model steadily
refines its policy against this mid-level opponent.

These results compellingly demonstrate that, even against
a nontrivial opponent, our diffusion model is able to incre-
mentally refine its decision-making, steadily narrowing its
material losses and improving positional choices on each
move. More broadly, this clear upward trajectory highlights
the promise of our hybrid self-play framework as a powerful
approach for training sophisticated, human-like decision-
making agents.

Episode Window  Mean Avg Move Reward

1-500 -0.3286
501-1000 -0.3013
1001-1500 -0.2389
1501-2000 -0.2354
2001-2500 -0.2220
2501-3000 -0.2223
3001-3500 -0.1642
3501-4000 -0.1237
4001-4500 -0.1230
4501-5000 -0.1202
5001-5500 -0.1450
5501-6000 -0.1040
6001-6500 -0.0967
6501-7000 -0.0645

TABLE I: Self-play of Diffusion Model against Maia-1100
Bot: Mean average move reward per 500-episode window is
reported, and shows an increase across episodes, indicating
that the agent continually learns to make better moves.



V. CONCLUSION AND FUTURE WORK

This research presents a significant step forward to-
wards creating more realistic and computationally efficient
chess Al systems. We successfully achieved a strong base-
line transformer model capable of high-skilled chess play
through our novel 2D spatial attention mechanism, demon-
strating that searchless architectures can compete with tra-
ditional approaches while requiring orders of magnitude
less computation. Our dual fine-tuning approaches—LoRA-
based direct action learning and diffusion-based trajectory
planning—showcase innovative methods for incorporating
human-like decision-making across multiple skill levels.

Our experiments also identified several areas for improve-
ment. The humanistic fine-tuning exposed constraints of our
6.89 million parameter model when faced with chess’s vast
state and action space, with compute limitations preventing
extensive experimentation. Our models often exhibit late-
game blunders, suggesting deeper networks are necessary for
strategic coherence over extended sequences. Future work
should prioritize expanding model size to achieve deeper
chess understanding and more robust endgame play.

Beyond technical improvements, this research opens ex-
citing possibilities for broader applications. While we use
chess as our exploration domain, these searchless and human-
skill modeling techniques can be adapted to various strate-
gic domains. Most immediately, this model offers a more
human-realistic training partner for chess players, providing
opponents that make consistent, skill-appropriate decisions
rather than the erratic play patterns of traditional engines,
better preparing players for tournament competition against
human opponents.
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